gov_commodity_zhejiang_city.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. import time
  2. from pathlib import Path
  3. import pandas as pd
  4. from utils import base_country_code, base_mysql
  5. from utils.base_country_code import format_sql_value
  6. city_code_map = {
  7. "杭州地区": "330100",
  8. "宁波地区": "330200",
  9. "温州地区": "330300",
  10. "绍兴地区": "330400",
  11. "湖州地区": "330500",
  12. "嘉兴地区": "330600",
  13. "金华地区": "330700",
  14. "衢州地区": "330800",
  15. "舟山地区": "330900",
  16. "台州地区": "331000",
  17. "丽水地区": "331100"
  18. }
  19. def get_df(path, year_month):
  20. file_paths = list(Path(path).glob('*'))
  21. if not file_paths:
  22. print("未找到任何文件")
  23. return None
  24. file_path = file_paths[0]
  25. sheet_name = base_country_code.find_sheet_by_keyword(file_path, "十一地市")
  26. flag = True
  27. if not sheet_name:
  28. print(f"{file_path} 未找到包含 十一地市 sheet")
  29. # 23年1-11月数据要在多文件里找
  30. for file_path in file_paths:
  31. if '十一地市' in file_path.name:
  32. file_path = file_path
  33. flag = False
  34. break
  35. if not sheet_name and flag:
  36. print(f"{path} 未找到包含 十一地市 sheet或文件")
  37. return None
  38. if flag:
  39. xls = pd.ExcelFile(file_path)
  40. df = pd.read_excel(xls, sheet_name=sheet_name, header=None)
  41. else:
  42. df = pd.read_excel(file_path, header=None)
  43. import_df = pd.DataFrame()
  44. export_df = pd.DataFrame()
  45. total_df = pd.DataFrame()
  46. temp_df = df[[1, 2]].rename(columns={1: 'commodity', 2: 'total'})
  47. temp_df['total'] = pd.to_numeric(temp_df['total'].replace('--', 0), errors='coerce').astype(float)
  48. if temp_df['total'] and year_month and year_month == '2024-07':
  49. temp_df['total'] = temp_df['total'] / 10000
  50. total_df = pd.concat([total_df, temp_df])
  51. temp_df = df[[1, 3]].rename(columns={1: 'commodity', 3: 'import'})
  52. temp_df['import'] = pd.to_numeric(temp_df['import'].replace('--', 0), errors='coerce').astype(float)
  53. if temp_df['import'] and year_month and year_month == '2024-07':
  54. temp_df['import'] = temp_df['import'] / 10000
  55. import_df = pd.concat([import_df, temp_df])
  56. temp_df = df[[1, 4]].rename(columns={1: 'commodity', 4: 'export'})
  57. temp_df['export'] = pd.to_numeric(temp_df['export'].replace('--', 0), errors='coerce').astype(float)
  58. if temp_df['export'] and year_month and year_month == '2024-07':
  59. temp_df['export'] = temp_df['export'] / 10000
  60. export_df = pd.concat([export_df, temp_df])
  61. return import_df, export_df, total_df
  62. def process_folder(path):
  63. year, month = base_country_code.extract_year_month_from_path(path)
  64. year_month = f'{year}-{month:02d}'
  65. sql_arr = []
  66. res = get_df(path, None)
  67. if res is None:
  68. print(f"{year_month} prov_region_trade 未找到包含 地市 sheet")
  69. return
  70. import_df, export_df, total_df = res
  71. # 当月数据分组清洗
  72. curr_import = import_df.groupby('commodity')['import'].sum().reset_index()
  73. curr_export = export_df.groupby('commodity')['export'].sum().reset_index()
  74. total_df = total_df.groupby('commodity')['total'].sum().reset_index()
  75. if not month == 1:
  76. previous_month_dir = base_country_code.get_previous_month_dir(path)
  77. res = get_df(previous_month_dir, year_month)
  78. if res is None:
  79. print(f"{path} 上月目录里文件未找到包含 地市 sheet")
  80. return
  81. prev_import_df, prev_export_df, prev_total_df = res
  82. # 上月数据分组
  83. prev_import = prev_import_df.groupby('commodity')['import'].sum().reset_index()
  84. prev_export = prev_export_df.groupby('commodity')['export'].sum().reset_index()
  85. prev_total_df = prev_total_df.groupby('commodity')['total'].sum().reset_index()
  86. # 差值计算
  87. curr_import = pd.merge(curr_import, prev_import, on='commodity', how='left')
  88. curr_import['import'] = round(curr_import['import_x'] - curr_import['import_y'], 4)
  89. curr_export = pd.merge(curr_export, prev_export, on='commodity', how='left')
  90. curr_export['export'] = round(curr_export['export_x'] - curr_export['export_y'], 4)
  91. total_df = pd.merge(total_df, prev_total_df, on='commodity', how='left')
  92. total_df['total'] = round(total_df['total_x'] - total_df['total_y'], 4)
  93. print(f"合并文件: {path}*********{previous_month_dir}")
  94. # 合并进出口数据
  95. merged_df = pd.merge(curr_import, curr_export, on='commodity', how='outer')
  96. merged_df = pd.merge(merged_df, total_df, on='commodity', how='outer')
  97. for _, row in merged_df.iterrows():
  98. city_name = str(row['commodity']).strip()
  99. city_code = city_code_map.get(city_name)
  100. if not city_code:
  101. print(f"未找到省 '{city_name}' 对应市编码")
  102. continue
  103. # 提取数据并格式化
  104. if year == 2025 or (year == 2024 and month in [7, 8, 9, 10, 11, 12]):
  105. monthly_import = round(row['import'], 4)
  106. monthly_export = round(row['export'], 4)
  107. monthly_total = round(row['total'], 4)
  108. else:
  109. monthly_import = round(row['import'] / 10000, 4)
  110. monthly_export = round(row['export'] / 10000, 4)
  111. monthly_total = round(row['total'] / 10000, 4)
  112. yoy_import_export, yoy_import, yoy_export = 0, 0, 0
  113. # 组装 SQL 语句
  114. sql = (f"INSERT INTO t_yujin_crossborder_prov_region_trade "
  115. f"(crossborder_year, crossborder_year_month, prov_code, prov_name, city_code, city_name, monthly_total, monthly_export, monthly_import,yoy_import_export, yoy_import, yoy_export, create_time) VALUES "
  116. f"('{year}', '{year_month}', '330000', '浙江省', '{city_code}', '{city_name}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, '{yoy_import_export}', '{yoy_import}', '{yoy_export}', now());\n")
  117. sql_arr.append(sql)
  118. print(f"√ {year_month} prov_region_trade 成功生成 SQL 文件 size {len(sql_arr)} ")
  119. # 解析完后生成sql文件批量入库
  120. base_mysql.bulk_insert(sql_arr)
  121. print(f"√ {year_month} prov_region_trade SQL 存表完成!")
  122. def hierarchical_traversal(root_path):
  123. root = Path(root_path)
  124. year_dirs = [
  125. item for item in root.iterdir()
  126. if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name)
  127. ]
  128. for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True):
  129. print(f"\n年份:{year_dir.name} | 省份:jiangsu")
  130. month_dirs = []
  131. for item in year_dir.iterdir():
  132. if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name):
  133. month_dirs.append({"path": item, "month": int(item.name)})
  134. if month_dirs:
  135. for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True):
  136. print(f" 月份:{md['month']:02d} | 路径:{md['path']}")
  137. process_folder(md['path'])
  138. if __name__ == '__main__':
  139. hierarchical_traversal(base_country_code.download_dir)
  140. print(f"浙江杭州海关城市所有文件处理完成!")
  141. time.sleep(5)
  142. base_mysql.update_january_yoy('浙江省')
  143. base_mysql.update_shandong_yoy('浙江省')
  144. print("同比sql处理完成")
  145. # root = Path(base_country_code.download_dir)/'2024'/'07'
  146. # process_folder(root)