123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- from pathlib import Path
- import re
- import pandas as pd
- from utils import base_country_code, base_mysql
- from utils.base_country_code import format_sql_value
- from utils.log import log
- CUSTOM_COMMODITY_REPLACEMENTS = {
- '稻谷及大米': '稻谷、大米及大米粉',
- '有机发光二极管平板显示模组': '有机发光二极管(OLED)平板显示模组',
- }
- PRESERVE_PARENTHESES_KEYWORDS = {
- '汽车(包括底盘)',
- }
- def clean_commodity_name(name, preserve_keywords=None):
- """
- 自定义清洗商品名称逻辑,支持条件保留中文括号内容
- :param name: 商品名称字符串
- :param preserve_keywords: 需要保留括号的关键词集合
- :return: 清洗后的商品名称
- """
- name = str(name).strip().replace('(', '(').replace(')', ')')
- # 去除非必要符号
- name = re.sub(r'[#*?]', '', name)
- name = re.sub(r'_x000D_', '', name)
- # 判断是否需要保留括号内容
- if preserve_keywords:
- for keyword in preserve_keywords:
- if keyword == name:
- # 匹配到关键词时,不移除括号内容
- return name
- # 默认移除中文括号及内容
- name = re.sub(r'([^)]*)', '', name)
- return name.strip()
- def get_df_import_export(path, year_month):
- file_paths = list(Path(path).glob('*'))
- if not file_paths:
- log.info("未找到任何文件")
- return None
- file_path = file_paths[0]
- log.info(f"处理文件: {file_path.name}")
- xls = pd.ExcelFile(file_path)
- import_df = pd.DataFrame()
- export_df = pd.DataFrame()
- flag = True
- sheet_name = base_country_code.find_sheet_by_keyword(file_path, "主出商品")
- if not sheet_name:
- log.info(f"{file_path} 单文件未找到包含 主出商品 sheet")
- # 23年1-11月数据要在多文件里找
- for file_path in file_paths:
- if '主要出口商品' in file_path.name:
- file_path = file_path
- flag = False
- break
- if not sheet_name and flag:
- log.info(f"{path} 中未找到 主出商品 sheet或文件")
- return None
- if flag:
- df = pd.read_excel(xls, sheet_name=sheet_name, header=None).iloc[2:]
- else:
- df = pd.read_excel(file_path, header=None).iloc[1:]
- temp_df = df[[0, 1]].rename(columns={0: 'commodity', 1: 'export'})
- temp_df['commodity'] = (
- temp_df['commodity']
- .astype(str)
- .apply(lambda x: clean_commodity_name(x, preserve_keywords=PRESERVE_PARENTHESES_KEYWORDS))
- .replace(CUSTOM_COMMODITY_REPLACEMENTS, regex=False)
- )
- temp_df['export'] = pd.to_numeric(temp_df['export'].replace('--', 0), errors='coerce').astype(float)
- if year_month and year_month == '2024-07':
- temp_df['export'] = temp_df['export'] / 10000
- export_df = pd.concat([export_df, temp_df])
- flag_2 = True
- sheet_name = base_country_code.find_sheet_by_keyword(file_path, "主进商品")
- if not sheet_name:
- log.info(f"{file_path} 单文件未找到包含 主进商品 sheet")
- # 23年1-11月数据要在多文件里找
- for file_path in file_paths:
- if '主要进口商品' in file_path.name:
- file_path = file_path
- flag_2 = False
- break
- if not sheet_name and flag_2:
- log.info(f"{path} 中未找到 主进商品 sheet或文件")
- return None
- if flag_2:
- df = pd.read_excel(xls, sheet_name=sheet_name, header=None).iloc[2:]
- else:
- df = pd.read_excel(file_path, header=None).iloc[1:]
- temp_df = df[[0, 1]].rename(columns={0: 'commodity', 1: 'import'})
- temp_df['commodity'] = (
- temp_df['commodity']
- .astype(str)
- .apply(lambda x: clean_commodity_name(x, preserve_keywords=PRESERVE_PARENTHESES_KEYWORDS))
- .replace(CUSTOM_COMMODITY_REPLACEMENTS, regex=False)
- )
- temp_df['import'] = pd.to_numeric(temp_df['import'].replace('--', 0), errors='coerce').astype(float)
- if year_month and year_month == '2024-07':
- temp_df['import'] = temp_df['import'] / 10000
- import_df = pd.concat([import_df, temp_df])
- return import_df, export_df
- def process_folder(path):
- res = get_df_import_export(path, None)
- if not res:
- log.info(f"{path} 目录里文件未找到包含 主出、主进商品 sheet")
- return
- import_df, export_df = res
- year, month = base_country_code.extract_year_month_from_path(path)
- year_month = f'{year}-{month:02d}'
- # 当月数据分组清洗
- curr_import = import_df.groupby('commodity')['import'].sum().reset_index()
- curr_export = export_df.groupby('commodity')['export'].sum().reset_index()
- if not month == 1:
- previous_month_dir = base_country_code.get_previous_month_dir(path)
- res = get_df_import_export(previous_month_dir, year_month)
- if not res:
- log.info(f"{path} 上月目录里文件未找到包含 主出、主进商品 sheet")
- return
- prev_import_df, prev_export_df = res
- # 上月数据分组
- prev_import = prev_import_df.groupby('commodity')['import'].sum().reset_index()
- prev_export = prev_export_df.groupby('commodity')['export'].sum().reset_index()
- # 差值计算
- curr_import = pd.merge(curr_import, prev_import, on='commodity', how='left')
- curr_import['import'] = round(curr_import['import_x'] - curr_import['import_y'], 4)
- curr_export = pd.merge(curr_export, prev_export, on='commodity', how='left')
- curr_export['export'] = round(curr_export['export_x'] - curr_export['export_y'], 4)
- log.info(f"合并文件: {path}*********{previous_month_dir}")
- # 合并进出口数据
- merged_df = pd.merge(curr_import, curr_export, on='commodity', how='outer')
- save_to_database(merged_df, year, month)
- def save_to_database(merged_df, year, month):
- year_month = f'{year}-{month:02d}'
- processed_commodities = set()
- sql_arr = []
- try:
- for _, row in merged_df.iterrows():
- commodity_name = str(row['commodity']).strip()
- if commodity_name == '消费品' or commodity_name == '劳动密集型产品':
- log.info(f'{commodity_name} 商品不存在,跳过')
- continue
- commodity_code, commodity_name_fix = base_mysql.get_commodity_id(commodity_name)
- if not commodity_code:
- log.info(f"未找到商品名称 '{commodity_name}' 对应的 ID")
- continue
- if not commodity_name_fix or commodity_name_fix in processed_commodities:
- log.info(f"已处理过 '{commodity_name_fix}',传入name:{commodity_name}")
- continue
- if year == 2025 or (year == 2024 and month in [7, 8, 9, 10, 11, 12]):
- monthly_import = round(row['import'], 4)
- monthly_export = round(row['export'], 4)
- monthly_total = round(
- (0 if pd.isna(monthly_import) else monthly_import) +
- (0 if pd.isna(monthly_export) else monthly_export),
- 4
- )
- else:
- monthly_import = round(row['import'] / 10000, 4)
- monthly_export = round(row['export'] / 10000, 4)
- monthly_total = round(
- (0 if pd.isna(monthly_import) else monthly_import) +
- (0 if pd.isna(monthly_export) else monthly_export),
- 4
- )
- sql = (f"INSERT INTO t_yujin_crossborder_prov_commodity_trade "
- f"(crossborder_year, crossborder_year_month, prov_code, prov_name, commodity_code, commodity_name, monthly_total, monthly_export, monthly_import, create_time) VALUES "
- f"('{year}', '{year_month}', '330000', '浙江省', '{commodity_code}', '{commodity_name_fix}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, now());")
- sql_arr.append(sql)
- processed_commodities.add(commodity_name_fix)
- # log.info(f'{commodity_name} -> {commodity_name_fix}')
- except Exception as e:
- log.info(f"{year_month} prov_commodity_trade 生成 SQL 文件时发生异常: {str(e)}")
- log.info(f"√ {year_month} prov_commodity_trade 成功生成 SQL 文件 size {len(sql_arr)} ")
- # 解析完后生成sql文件批量入库
- base_mysql.bulk_insert(sql_arr)
- log.info(f"√ {year_month} prov_commodity_trade SQL 存表完成!\n")
- def hierarchical_traversal(root_path):
- """分层遍历:省份->年份->月目录"""
- root = Path(root_path)
- # 获取所有年份目录
- year_dirs = [
- item for item in root.iterdir()
- if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name)
- ]
- # 按年倒序
- for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True):
- log.info(f"\n年份:{year_dir.name} | 省份:jiangsu")
- # 提取月份目录
- month_dirs = []
- for item in year_dir.iterdir():
- if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name):
- month_dirs.append({
- "path": item,
- "month": int(item.name)
- })
- # 按月倒序输出
- if month_dirs:
- for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True):
- log.info(f" 月份:{md['month']:02d} | 路径:{md['path']}")
- process_folder(md['path'])
- if __name__ == '__main__':
- hierarchical_traversal(base_country_code.download_dir)
- # root = Path(base_country_code.download_dir)/'2023'/'01'
- # process_folder(root)
- log.info("浙江杭州海关类章所有文件处理完成!")
|