123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- import time
- from pathlib import Path
- import pandas as pd
- from utils import base_country_code, base_mysql
- from utils.base_country_code import format_sql_value
- from utils.log import log
- city_code_map = {
- "杭州地区": "330100",
- "宁波地区": "330200",
- "温州地区": "330300",
- "绍兴地区": "330400",
- "湖州地区": "330500",
- "嘉兴地区": "330600",
- "金华地区": "330700",
- "衢州地区": "330800",
- "舟山地区": "330900",
- "台州地区": "331000",
- "丽水地区": "331100"
- }
- def get_df(path, year_month):
- file_paths = list(Path(path).glob('*'))
- if not file_paths:
- log.info("未找到任何文件")
- return None
- file_path = file_paths[0]
- sheet_name = base_country_code.find_sheet_by_keyword(file_path, "十一地市")
- flag = True
- if not sheet_name:
- log.info(f"{file_path} 未找到包含 十一地市 sheet")
- # 23年1-11月数据要在多文件里找
- for file_path in file_paths:
- if '十一地市' in file_path.name:
- file_path = file_path
- flag = False
- break
- if not sheet_name and flag:
- log.info(f"{path} 未找到包含 十一地市 sheet或文件")
- return None
- if flag:
- xls = pd.ExcelFile(file_path)
- df = pd.read_excel(xls, sheet_name=sheet_name, header=None)
- else:
- df = pd.read_excel(file_path, header=None)
- import_df = pd.DataFrame()
- export_df = pd.DataFrame()
- total_df = pd.DataFrame()
- temp_df = df[[1, 2]].rename(columns={1: 'commodity', 2: 'total'})
- temp_df['total'] = pd.to_numeric(temp_df['total'].replace('--', 0), errors='coerce').astype(float)
- if year_month and year_month == '2024-07':
- temp_df['total'] = temp_df['total'] / 10000
- total_df = pd.concat([total_df, temp_df])
- temp_df = df[[1, 3]].rename(columns={1: 'commodity', 3: 'import'})
- temp_df['import'] = pd.to_numeric(temp_df['import'].replace('--', 0), errors='coerce').astype(float)
- if year_month and year_month == '2024-07':
- temp_df['import'] = temp_df['import'] / 10000
- import_df = pd.concat([import_df, temp_df])
- temp_df = df[[1, 4]].rename(columns={1: 'commodity', 4: 'export'})
- temp_df['export'] = pd.to_numeric(temp_df['export'].replace('--', 0), errors='coerce').astype(float)
- if year_month and year_month == '2024-07':
- temp_df['export'] = temp_df['export'] / 10000
- export_df = pd.concat([export_df, temp_df])
- return import_df, export_df, total_df
- def process_folder(path):
- year, month = base_country_code.extract_year_month_from_path(path)
- year_month = f'{year}-{month:02d}'
- sql_arr = []
- res = get_df(path, None)
- if res is None:
- log.info(f"{year_month} prov_region_trade 未找到包含 地市 sheet")
- return
- import_df, export_df, total_df = res
- # 当月数据分组清洗
- curr_import = import_df.groupby('commodity')['import'].sum().reset_index()
- curr_export = export_df.groupby('commodity')['export'].sum().reset_index()
- total_df = total_df.groupby('commodity')['total'].sum().reset_index()
- if not month == 1:
- previous_month_dir = base_country_code.get_previous_month_dir(path)
- res = get_df(previous_month_dir, year_month)
- if res is None:
- log.info(f"{path} 上月目录里文件未找到包含 地市 sheet")
- return
- prev_import_df, prev_export_df, prev_total_df = res
- # 上月数据分组
- prev_import = prev_import_df.groupby('commodity')['import'].sum().reset_index()
- prev_export = prev_export_df.groupby('commodity')['export'].sum().reset_index()
- prev_total_df = prev_total_df.groupby('commodity')['total'].sum().reset_index()
- # 差值计算
- curr_import = pd.merge(curr_import, prev_import, on='commodity', how='left')
- curr_import['import'] = round(curr_import['import_x'] - curr_import['import_y'], 4)
- curr_export = pd.merge(curr_export, prev_export, on='commodity', how='left')
- curr_export['export'] = round(curr_export['export_x'] - curr_export['export_y'], 4)
- total_df = pd.merge(total_df, prev_total_df, on='commodity', how='left')
- total_df['total'] = round(total_df['total_x'] - total_df['total_y'], 4)
- log.info(f"合并文件: {path}*********{previous_month_dir}")
- # 合并进出口数据
- merged_df = pd.merge(curr_import, curr_export, on='commodity', how='outer')
- merged_df = pd.merge(merged_df, total_df, on='commodity', how='outer')
- for _, row in merged_df.iterrows():
- city_name = str(row['commodity']).strip()
- city_code = city_code_map.get(city_name)
- if not city_code:
- log.info(f"未找到省 '{city_name}' 对应市编码")
- continue
- # 提取数据并格式化
- if year == 2025 or (year == 2024 and month in [7, 8, 9, 10, 11, 12]):
- monthly_import = round(row['import'], 4)
- monthly_export = round(row['export'], 4)
- monthly_total = round(row['total'], 4)
- else:
- monthly_import = round(row['import'] / 10000, 4)
- monthly_export = round(row['export'] / 10000, 4)
- monthly_total = round(row['total'] / 10000, 4)
- yoy_import_export, yoy_import, yoy_export = 0, 0, 0
- # 组装 SQL 语句
- sql = (f"INSERT INTO t_yujin_crossborder_prov_region_trade "
- f"(crossborder_year, crossborder_year_month, prov_code, prov_name, city_code, city_name, monthly_total, monthly_export, monthly_import,yoy_import_export, yoy_import, yoy_export, create_time) VALUES "
- f"('{year}', '{year_month}', '330000', '浙江省', '{city_code}', '{city_name}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, '{yoy_import_export}', '{yoy_import}', '{yoy_export}', now());\n")
- sql_arr.append(sql)
- log.info(f"√ {year_month} prov_region_trade 成功生成 SQL 文件 size {len(sql_arr)} ")
- base_mysql.bulk_insert(sql_arr)
- log.info(f"√ {year_month} prov_region_trade SQL 存表完成!")
- def hierarchical_traversal(root_path):
- root = Path(root_path)
- year_dirs = [
- item for item in root.iterdir()
- if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name)
- ]
- for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True):
- log.info(f"\n年份:{year_dir.name} | 省份:zhejiang")
- month_dirs = []
- for item in year_dir.iterdir():
- if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name):
- month_dirs.append({"path": item, "month": int(item.name)})
- if month_dirs:
- for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True):
- log.info(f" 月份:{md['month']:02d} | 路径:{md['path']}")
- process_folder(md['path'])
- if __name__ == '__main__':
- hierarchical_traversal(base_country_code.download_dir)
- log.info(f"浙江杭州海关城市所有文件处理完成!")
- time.sleep(5)
- base_mysql.update_january_yoy('浙江省')
- base_mysql.update_shandong_yoy('浙江省')
- log.info("同比sql处理完成")
- # root = Path(base_country_code.download_dir)/'2024'/'07'
- # process_folder(root)
|