gov_commodity_jiangsu_city.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. import time
  2. from pathlib import Path
  3. import pandas as pd
  4. from utils import base_country_code, base_mysql
  5. from utils.base_country_code import format_sql_value
  6. from utils.log import log
  7. city_code_map = {
  8. "南京市": "3201",
  9. "无锡市": "3202",
  10. "徐州市": "3203",
  11. "常州市": "3204",
  12. "苏州市": "3205",
  13. "南通市": "3206",
  14. "连云港市": "3207",
  15. "淮安市": "3208",
  16. "盐城市": "3209",
  17. "扬州市": "3210",
  18. "镇江市": "3211",
  19. "泰州市": "3212",
  20. "宿迁市": "3213"
  21. }
  22. ignore_city_code_arr = ['江阴市','宜兴市','常熟市','张家港市','昆山市','吴江市','太仓市','启东市','东台市','仪征市','丹阳市','兴化市']
  23. def get_df(path):
  24. global df, df_type
  25. file_paths = list(Path(path).glob('*'))
  26. if not file_paths:
  27. log.info("未找到任何文件")
  28. return
  29. if len(file_paths) == 1:
  30. file_path = file_paths[0]
  31. log.info(f"处理单文件: {file_path.name}")
  32. xls = pd.ExcelFile(file_path)
  33. sheet_name = base_country_code.find_sheet_by_keyword(file_path, "地")
  34. if not sheet_name:
  35. log.info(f"{file_path} 未找到包含 地市 sheet")
  36. return None
  37. df = pd.read_excel(xls, sheet_name=sheet_name, header=None).iloc[5:]
  38. df_type = 0
  39. else:
  40. for file in file_paths:
  41. if "地区" in file.name:
  42. log.info(f"处理多文件: {file.name}")
  43. file_path = Path(path) / file
  44. df = pd.read_excel(file_path, header=None).iloc[6:]
  45. df_type = 1
  46. break
  47. return df, df_type
  48. def process_folder(path):
  49. year, month = base_country_code.extract_year_month_from_path(path)
  50. year_month = f'{year}-{month:02d}'
  51. sql_arr = []
  52. res = get_df(path)
  53. if res is None:
  54. log.info(f"{year_month} prov_region_trade 未找到包含 地市 sheet")
  55. return
  56. df, df_type = res
  57. if df_type == 0:
  58. country_name_index = 0
  59. col_total_index = 1
  60. else:
  61. country_name_index = 1
  62. col_total_index = 2
  63. for index, row in df.iterrows():
  64. city_name = str(row.values[country_name_index]).strip()
  65. flag = False
  66. for ignore_city_code in ignore_city_code_arr:
  67. if city_name.startswith('其中') or ignore_city_code.endswith(city_name):
  68. flag = True
  69. break
  70. if flag:
  71. log.info(f"忽略 {city_name}")
  72. continue
  73. city_code = city_code_map.get(city_name)
  74. if not city_code:
  75. log.info(f"未找到省 '{city_name}' 对应市编码")
  76. continue
  77. monthly_export, monthly_import, monthly_total = value_row(row, col_total_index)
  78. if df_type == 0:
  79. monthly_export, monthly_import, monthly_total = round(float(monthly_export) * 10000, 4), round(float(monthly_import) * 10000, 4), round(float(monthly_total) * 10000, 4)
  80. yoy_export, yoy_import, yoy_import_export = 0, 0, 0
  81. # 组装 SQL 语句
  82. sql = (f"INSERT INTO t_yujin_crossborder_prov_region_trade "
  83. f"(crossborder_year, crossborder_year_month, prov_code, prov_name, city_code, city_name, monthly_total, monthly_export, monthly_import,yoy_import_export, yoy_import, yoy_export, create_time) VALUES "
  84. f"('{year}', '{year_month}', '320000', '江苏省', '{city_code}', '{city_name}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, '{yoy_import_export}', '{yoy_import}', '{yoy_export}', now());\n")
  85. sql_arr.append(sql)
  86. log.info(f"√ {year_month} prov_region_trade 成功生成 SQL 文件 size {len(sql_arr)} ")
  87. # 解析完后生成sql文件批量入库
  88. base_mysql.bulk_insert(sql_arr)
  89. log.info(f"√ {year_month} prov_region_trade SQL 存表完成!")
  90. def value_row(row,col_total_index):
  91. monthly_total = str(row.values[col_total_index]).strip()
  92. monthly_export = str(row.values[col_total_index + 2]).strip()
  93. monthly_import = str(row.values[col_total_index + 4]).strip()
  94. return monthly_export, monthly_import, monthly_total
  95. def hierarchical_traversal(root_path):
  96. root = Path(root_path)
  97. year_dirs = [
  98. item for item in root.iterdir()
  99. if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name)
  100. ]
  101. for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True):
  102. log.info(f"\n年份:{year_dir.name} | 省份:jiangsu")
  103. month_dirs = []
  104. for item in year_dir.iterdir():
  105. if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name):
  106. month_dirs.append({"path": item, "month": int(item.name)})
  107. if month_dirs:
  108. for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True):
  109. log.info(f" 月份:{md['month']:02d} | 路径:{md['path']}")
  110. process_folder(md['path'])
  111. if __name__ == '__main__':
  112. hierarchical_traversal(base_country_code.download_dir)
  113. log.info(f"江苏南京海关城市所有文件处理完成!")
  114. time.sleep(5)
  115. base_mysql.update_january_yoy('江苏省')
  116. base_mysql.update_shandong_yoy('江苏省')
  117. log.info("江苏南京同比sql处理完成")