gov_commodity_jiangsu_city.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. import time
  2. from pathlib import Path
  3. import pandas as pd
  4. from utils import base_country_code, base_mysql
  5. from utils.base_country_code import format_sql_value
  6. from utils.log import log
  7. city_code_map = {
  8. "南京市": "320100",
  9. "无锡市": "320200",
  10. "徐州市": "320300",
  11. "常州市": "320400",
  12. "苏州市": "320500",
  13. "南通市": "320600",
  14. "连云港市": "320700",
  15. "淮安市": "320800",
  16. "盐城市": "320900",
  17. "扬州市": "321000",
  18. "镇江市": "321100",
  19. "泰州市": "321200",
  20. "宿迁市": "321300"
  21. }
  22. ignore_city_code_arr = ['江阴市','宜兴市','常熟市','张家港市','昆山市','吴江市','太仓市','启东市','东台市','仪征市','丹阳市','兴化市']
  23. def get_df(path, year_month):
  24. global df, df_type
  25. file_paths = list(Path(path).glob('*'))
  26. if not file_paths:
  27. log.info("未找到任何文件")
  28. return
  29. if len(file_paths) == 1:
  30. file_path = file_paths[0]
  31. log.info(f"处理单文件: {file_path.name}")
  32. xls = pd.ExcelFile(file_path)
  33. sheet_index = 5 if year_month == '2024-11' else 3
  34. df = pd.read_excel(xls, sheet_name=sheet_index, header=None).iloc[5:]
  35. df_type = 0
  36. else:
  37. for file in file_paths:
  38. if "地区" in file.name:
  39. log.info(f"处理多文件: {file.name}")
  40. file_path = Path(path) / file
  41. df = pd.read_excel(file_path, header=None).iloc[6:]
  42. df_type = 1
  43. break
  44. return df, df_type
  45. def process_folder(path):
  46. year, month = base_country_code.extract_year_month_from_path(path)
  47. year_month = f'{year}-{month:02d}'
  48. sql_arr = []
  49. res = get_df(path, year_month)
  50. if res is None:
  51. log.info(f"{year_month} prov_region_trade 未找到包含 地市 sheet")
  52. return
  53. df, df_type = res
  54. if df_type == 0:
  55. country_name_index = 0
  56. col_total_index = 1
  57. else:
  58. country_name_index = 1
  59. col_total_index = 2
  60. for index, row in df.iterrows():
  61. city_name = str(row.values[country_name_index]).strip()
  62. flag = False
  63. for ignore_city_code in ignore_city_code_arr:
  64. if city_name.startswith('其中') or ignore_city_code.endswith(city_name):
  65. flag = True
  66. break
  67. if flag:
  68. log.info(f"忽略 {city_name}")
  69. continue
  70. city_code = city_code_map.get(city_name)
  71. if not city_code:
  72. log.info(f"未找到省 '{city_name}' 对应市编码")
  73. continue
  74. monthly_export, monthly_import, monthly_total = value_row(row, col_total_index)
  75. if df_type == 0:
  76. monthly_export, monthly_import, monthly_total = round(float(monthly_export) * 10000, 4), round(float(monthly_import) * 10000, 4), round(float(monthly_total) * 10000, 4)
  77. yoy_export, yoy_import, yoy_import_export = 0, 0, 0
  78. # 组装 SQL 语句
  79. sql = (f"INSERT INTO t_yujin_crossborder_prov_region_trade "
  80. f"(crossborder_year, crossborder_year_month, prov_code, prov_name, city_code, city_name, monthly_total, monthly_export, monthly_import,yoy_import_export, yoy_import, yoy_export, create_time) VALUES "
  81. f"('{year}', '{year_month}', '320000', '江苏省', '{city_code}', '{city_name}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, '{yoy_import_export}', '{yoy_import}', '{yoy_export}', now())"
  82. f"ON DUPLICATE KEY UPDATE create_time = now(); \n")
  83. sql_arr.append(sql)
  84. log.info(f"√ {year_month} prov_region_trade 成功生成 SQL 文件 size {len(sql_arr)} ")
  85. # 解析完后生成sql文件批量入库
  86. base_mysql.bulk_insert(sql_arr)
  87. log.info(f"√ {year_month} prov_region_trade SQL 存表完成!")
  88. def value_row(row,col_total_index):
  89. monthly_total = str(row.values[col_total_index]).strip()
  90. monthly_export = str(row.values[col_total_index + 2]).strip()
  91. monthly_import = str(row.values[col_total_index + 4]).strip()
  92. return monthly_export, monthly_import, monthly_total
  93. def hierarchical_traversal(root_path):
  94. root = Path(root_path)
  95. year_dirs = [
  96. item for item in root.iterdir()
  97. if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name)
  98. ]
  99. for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True):
  100. log.info(f"\n年份:{year_dir.name} | 省份:jiangsu")
  101. month_dirs = []
  102. for item in year_dir.iterdir():
  103. if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name):
  104. month_dirs.append({"path": item, "month": int(item.name)})
  105. if month_dirs:
  106. for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True):
  107. log.info(f" 月份:{md['month']:02d} | 路径:{md['path']}")
  108. process_folder(md['path'])
  109. if __name__ == '__main__':
  110. hierarchical_traversal(base_country_code.download_dir)
  111. log.info(f"江苏南京海关城市所有文件处理完成!")
  112. time.sleep(5)
  113. base_mysql.update_january_yoy('江苏省')
  114. base_mysql.update_shandong_yoy('江苏省')
  115. log.info("江苏南京同比sql处理完成")