123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- import re
- from pathlib import Path
- import pandas as pd
- from com.zf.crawl import base_country_code
- from com.zf.crawl import base_mysql
- CUSTOM_COMMODITY_REPLACEMENTS = {
- '家具': '家具及其零件',
- '眼镜': '眼镜及其零件',
- }
- # 需要保留中文括号及内容的商品关键词
- PRESERVE_PARENTHESES_KEYWORDS = {
- '汽车(包括底盘)',
- }
- def clean_commodity_name(name, preserve_keywords=None):
- """
- 自定义清洗商品名称逻辑,支持条件保留中文括号内容
- :param name: 商品名称字符串
- :param preserve_keywords: 需要保留括号的关键词集合
- :return: 清洗后的商品名称
- """
- name = str(name).strip()
- # 去除非必要符号
- name = re.sub(r'[#*]', '', name)
- # 判断是否需要保留括号内容
- if preserve_keywords:
- for keyword in preserve_keywords:
- if keyword == name:
- # 匹配到关键词时,不移除括号内容
- return name
- # 默认移除中文括号及内容
- name = re.sub(r'([^)]*)', '', name)
- return name.strip()
- def process_folder(path):
- file_paths = list(Path(path).glob('*'))
- if not file_paths:
- print("未找到任何文件")
- return
- year, month = base_country_code.extract_year_month_from_path(path)
- import_df = pd.DataFrame()
- export_df = pd.DataFrame()
- for file in file_paths:
- file_path = Path(path) / file
- df = pd.read_excel(file_path, header=None).iloc[6:]
- value_index = 1 if month == 2 else 3
- if "进口商品总值" in file.name:
- temp_df = df[[0, value_index]].rename(columns={0: 'commodity', value_index: 'import'})
- temp_df['commodity'] = (
- temp_df['commodity']
- .astype(str)
- .apply(lambda x: clean_commodity_name(x, preserve_keywords=PRESERVE_PARENTHESES_KEYWORDS))
- .replace(CUSTOM_COMMODITY_REPLACEMENTS, regex=False)
- )
- temp_df['import'] = pd.to_numeric(temp_df['import'].replace('--', 0), errors='coerce')
- # 去重 commodity 列,保留第一个出现的行
- temp_df = temp_df.drop_duplicates(subset=['commodity'], keep='first')
- import_df = pd.concat([import_df, temp_df])
- elif "出口商品总值" in file.name:
- temp_df = df[[0, value_index]].rename(columns={0: 'commodity', value_index: 'export'})
- temp_df['commodity'] = (
- temp_df['commodity']
- .astype(str)
- .apply(lambda x: clean_commodity_name(x, preserve_keywords=PRESERVE_PARENTHESES_KEYWORDS))
- .replace(CUSTOM_COMMODITY_REPLACEMENTS, regex=False)
- )
- temp_df['export'] = pd.to_numeric(temp_df['export'].replace('--', 0), errors='coerce')
- temp_df = temp_df.drop_duplicates(subset=['commodity'], keep='first')
- export_df = pd.concat([export_df, temp_df])
- save_to_database(import_df, export_df, year, month)
- def save_to_database(import_df, export_df, year, month):
- # 合并数据(使用outer join保留所有商品)
- merged_df = pd.merge(
- import_df.groupby('commodity')['import'].sum().reset_index(),
- export_df.groupby('commodity')['export'].sum().reset_index(),
- on='commodity',
- how='outer'
- )
- year_month = f'{year}-{month:02d}'
- processed_commodities = set()
- sql_arr = []
- sql_arr_copy = []
- try:
- for _, row in merged_df.iterrows():
- commodity_name = str(row['commodity'])
- if commodity_name == '肉类' or commodity_name == '其他' or commodity_name == '干鲜瓜果' or commodity_name == '钟表':
- print(f'{commodity_name} 商品不存在,跳过')
- continue
- commodity_code, commodity_name_fix = base_mysql.get_commodity_id(commodity_name)
- if not commodity_code:
- print(f"未找到商品名称 '{commodity_name}' 对应的 ID")
- continue
- if not commodity_name_fix or commodity_name_fix in processed_commodities:
- continue
- monthly_import = round(row['import'] * 10000, 4)
- monthly_export = round(row['export'] * 10000, 4)
- monthly_total = round(monthly_import + monthly_export, 4)
- if month == 2:
- year_month_2 = f'{year}-01'
- monthly_import = round(monthly_import / 2, 4)
- monthly_export = round(monthly_export / 2, 4)
- monthly_total = round(monthly_import + monthly_export, 4)
- sql = (f"INSERT INTO t_yujin_crossborder_prov_commodity_trade "
- f"(crossborder_year, crossborder_year_month, prov_code, prov_name, commodity_code, commodity_name, monthly_total, monthly_export, monthly_import, create_time) VALUES "
- f"('{year}', '{year_month_2}', '340000', '安徽省', '{commodity_code}', '{commodity_name_fix}', {monthly_total}, {monthly_export}, {monthly_import}, now());")
- sql_arr_copy.append(sql)
- sql = (f"INSERT INTO t_yujin_crossborder_prov_commodity_trade "
- f"(crossborder_year, crossborder_year_month, prov_code, prov_name, commodity_code, commodity_name, monthly_total, monthly_export, monthly_import, create_time) VALUES "
- f"('{year}', '{year_month}', '340000', '安徽省', '{commodity_code}', '{commodity_name_fix}', {monthly_total}, {monthly_export}, {monthly_import}, now());")
- sql_arr.append(sql)
- processed_commodities.add(commodity_name_fix)
- # print(f'{commodity_name} -> {commodity_name_fix}')
- except Exception as e:
- print(f"{year_month} prov_commodity_trade 生成 SQL 文件时发生异常: {str(e)}")
- print(f"√ {year_month} prov_commodity_trade 成功生成 SQL 文件 size {len(sql_arr)} ")
- # 解析完后生成sql文件批量入库
- base_mysql.bulk_insert(sql_arr)
- if month == 2:
- print(f"√ {year_month} prov_commodity_trade copy 成功生成 SQL 文件 size {len(sql_arr_copy)} ")
- base_mysql.bulk_insert(sql_arr_copy)
- print(f"√ {year_month} prov_commodity_trade SQL 存表完成!\n")
- def hierarchical_traversal(root_path):
- """分层遍历:省份->年份->月目录"""
- root = Path(root_path)
- # 获取所有年份目录
- year_dirs = [
- item for item in root.iterdir()
- if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name)
- ]
- # 按年倒序
- for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True):
- # 构造完整的路径:download/shandong/2025/03
- print(f"\n年份:{year_dir.name} | 省份:jiangsu")
- # 提取月份目录
- month_dirs = []
- for item in year_dir.iterdir():
- if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name):
- month_dirs.append({
- "path": item,
- "month": int(item.name)
- })
- # 按月倒序输出
- if month_dirs:
- for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True):
- print(f" 月份:{md['month']:02d} | 路径:{md['path']}")
- process_folder(md['path'])
- if __name__ == '__main__':
- hierarchical_traversal(base_country_code.download_dir)
- # root = Path(base_country_code.download_dir)/'2025'/'04'
- # process_folder(root)
- print("安徽合肥海关类章所有文件处理完成!")
|