gov_commodity_hebei_city.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. from pathlib import Path
  2. import pandas
  3. import pandas as pd
  4. from crossborder.hebei import download_dir
  5. from crossborder.utils import base_country_code, base_mysql
  6. from crossborder.utils.base_country_code import format_sql_value
  7. from crossborder.utils.log import get_logger
  8. log = get_logger(__name__)
  9. city_code_map = {
  10. "石家庄市": "130100",
  11. "唐山市": "130200",
  12. "秦皇岛市": "130300",
  13. "邯郸市": "130400",
  14. "邢台市": "130500",
  15. "保定市": "130600",
  16. "张家口市": "130700",
  17. "承德市": "130800",
  18. "沧州市": "130900",
  19. "廊坊市": "131000",
  20. "衡水市": "131100",
  21. }
  22. def get_df(path):
  23. file_paths = list(Path(path).glob('*'))
  24. if not file_paths:
  25. log.info("未找到任何文件")
  26. return None
  27. for file in file_paths:
  28. if "地市" in file.name:
  29. log.info(f"处理多文件: {file.name}")
  30. file_path = Path(path) / file
  31. return pd.read_excel(file_path, header=None).iloc[5:]
  32. return None
  33. def process_folder(path):
  34. year, month = base_country_code.extract_year_month_from_path(path)
  35. year_month = f'{year}-{month:02d}'
  36. df = get_df(path)
  37. if df is None:
  38. log.info("未找到任何文件")
  39. return None
  40. if year == 2025 and month >= 3:
  41. col_total_index, col_monthly_export_index, col_monthly_import_index = 2, 10, 18
  42. elif year_month in ['2023-02', '2025-01', '2024-01']:
  43. col_total_index, col_monthly_export_index, col_monthly_import_index = 1, 5, 9
  44. else:
  45. col_total_index, col_monthly_export_index, col_monthly_import_index = 1, 9, 17
  46. country_name_index = 1 if year == 2025 and month >= 3 else 0
  47. sql_arr = []
  48. sql_arr_copy = []
  49. for index, row in df.iterrows():
  50. city_name = str(row.values[country_name_index]).strip()
  51. if city_name.startswith('河北省'):
  52. city_name = city_name.lstrip('河北省')
  53. city_code = city_code_map.get(city_name)
  54. if not city_code:
  55. log.info(f"未找到省 '{city_name}' 对应市编码")
  56. continue
  57. monthly_export, monthly_import, monthly_total = value_row(row, col_total_index, col_monthly_export_index, col_monthly_import_index)
  58. yoy_export, yoy_import, yoy_import_export = 0, 0, 0
  59. if year_month == '2023-02':
  60. # 所有总额除2
  61. monthly_import = round(float(monthly_import) / 2, 4)
  62. monthly_export = round(float(monthly_export) / 2, 4)
  63. monthly_total = round(float(monthly_total) / 2, 4)
  64. sql_1 = (f"INSERT INTO t_yujin_crossborder_prov_region_trade "
  65. f"(crossborder_year, crossborder_year_month, prov_code, prov_name, city_code, city_name, monthly_total, monthly_export, monthly_import,yoy_import_export, yoy_import, yoy_export, create_time) VALUES "
  66. f"('2023', '2023-01', '130000', '河北省', '{city_code}', '{city_name}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, '{yoy_import_export}', '{yoy_import}', '{yoy_export}', now()) ON DUPLICATE KEY UPDATE create_time = now() ;\n")
  67. sql_arr_copy.append(sql_1)
  68. # 组装 SQL 语句
  69. sql = (f"INSERT INTO t_yujin_crossborder_prov_region_trade "
  70. f"(crossborder_year, crossborder_year_month, prov_code, prov_name, city_code, city_name, monthly_total, monthly_export, monthly_import,yoy_import_export, yoy_import, yoy_export, create_time) VALUES "
  71. f"('{year}', '{year_month}', '130000', '河北省', '{city_code}', '{city_name}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, '{yoy_import_export}', '{yoy_import}', '{yoy_export}', now()) ON DUPLICATE KEY UPDATE create_time = now() ;\n")
  72. sql_arr.append(sql)
  73. log.info(f"√ {year_month} prov_region_trade 成功生成 SQL 文件 size {len(sql_arr)} ")
  74. # 解析完后生成sql文件批量入库
  75. base_mysql.bulk_insert(sql_arr)
  76. if year_month == '2023-02':
  77. log.info(f"√ {year_month} sql_arr_copy 成功生成 SQL 文件 size {len(sql_arr_copy)} ")
  78. base_mysql.bulk_insert(sql_arr_copy)
  79. log.info(f"√ {year_month} prov_region_trade SQL 存表完成!")
  80. def value_row(row, col_total_index, col_monthly_export_index, col_monthly_import_index):
  81. monthly_total = str(row.values[col_total_index]).strip()
  82. monthly_export = str(row.values[col_monthly_export_index]).strip()
  83. monthly_import = str(row.values[col_monthly_import_index]).strip()
  84. return monthly_export, monthly_import, monthly_total
  85. def value_special_handler(value):
  86. if pandas.isna(value) or value == "--":
  87. return "0"
  88. else:
  89. return value
  90. def hierarchical_traversal(root_path):
  91. root = Path(root_path)
  92. year_dirs = [
  93. item for item in root.iterdir()
  94. if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name)
  95. ]
  96. for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True):
  97. log.info(f"\n年份:{year_dir.name} | 省份:hebei")
  98. month_dirs = []
  99. for item in year_dir.iterdir():
  100. if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name):
  101. month_dirs.append({"path": item, "month": int(item.name)})
  102. if month_dirs:
  103. for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True):
  104. log.info(f" 月份:{md['month']:02d} | 路径:{md['path']}")
  105. process_folder(md['path'])
  106. if __name__ == '__main__':
  107. hierarchical_traversal(download_dir)
  108. log.info(f"河北石家庄海关城市所有文件处理完成!")