123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438 |
- import argparse
- import random
- import re
- import time
- from datetime import datetime, timedelta
- import pandas as pd
- from selenium import webdriver
- from selenium.common import TimeoutException
- from selenium.webdriver.common.by import By
- from selenium.webdriver.support import expected_conditions as EC
- from selenium.webdriver.support.ui import WebDriverWait
- from utils.db_helper import DBHelper
- from utils.constants import DOWNLOAD_DIR, COUNTRY_CODE_MAPPING
- from utils.download_utils import configure_stealth_options, generate_month_sequence
- from utils.log import log
- from utils.parse_utils import clean_county_name, convert_wan_to_yuan, clean_commodity_name
- BASE_URL = "http://gdfs.customs.gov.cn/guangdong_sub/zwgk62/sjgb59/6b4cdb3f-1.html"
- download_dir = DOWNLOAD_DIR / "guangdong"
- PROV_CODE = "440000"
- PROV_NAME = "广东省"
- db = DBHelper()
- def detect_latest_month(driver):
- """三级回溯智能检测最新有效月份(修正年/月匹配逻辑)"""
- driver.get(BASE_URL)
- current_date = datetime.now()
- for offset in range(0, 3):
- check_date = current_date - timedelta(days=offset * 30)
- check_year = check_date.year
- check_month = check_date.month
- # 构建正则表达式:兼容“1至X月”和“X月”两种格式,并允许前后有空格
- pattern = re.compile(
- rf'(5){check_year}\s*年\s*(?:1至)?{check_month}\s*月广东省外贸进出口主要国别(地区)总值表(人民币值)',
- re.IGNORECASE
- )
- try:
- # 使用 Python 端的正则匹配所有含“广东省”的链接 title
- elements = WebDriverWait(driver, 10).until(
- EC.presence_of_all_elements_located((By.XPATH, '//a[contains(@title,"广东省")]'))
- )
- for element in elements:
- title = element.get_attribute("title")
- if pattern.search(title):
- log.info(f"已找到最新月份数据 {check_year}-{check_month}")
- return check_year, check_month
- log.info(f"未找到匹配项(正则:{pattern.pattern})")
- except TimeoutException:
- log.info(f"页面加载超时或无匹配项({check_year}-{check_month})")
- continue
- raise Exception("三个月内未找到有效数据")
- def process_month_data(driver, year, month):
- """处理月度数据:支持三种表格类型"""
- patterns = [
- (re.compile(rf'(5){year}\s*年\s*(1-)?{month}\s*月广东省外贸进出口主要国别(地区)总值表(人民币值)'), 'country'),
- (re.compile(rf'(6){year}\s*年\s*(1-)?{month}\s*月广东省出口重点商品总值表(人民币值)'), 'export_commodity'),
- (re.compile(rf'(7){year}\s*年\s*(1-)?{month}\s*月广东省进口重点商品总值表(人民币值)'), 'import_commodity')
- ]
- found_count = 0
- commodity_data = {'export': [], 'import': []} # 存储商品数据等待合并
- links = driver.find_elements(By.XPATH, '//a[contains(@title,"广东省")]')
- for link in links:
- title = link.get_attribute("title")
- for pattern, table_type in patterns:
- if pattern.search(title):
- log.info(f"处理表格: {title}")
- url = link.get_attribute("href")
- # 新标签页处理
- driver.execute_script("window.open(arguments[0]);", url)
- driver.switch_to.window(driver.window_handles[-1])
- try:
- WebDriverWait(driver, 15).until(
- EC.presence_of_element_located((By.XPATH, "//table[@border='1']"))
- )
- # 根据表格类型处理数据
- if table_type == 'country':
- data = parse_country_table(driver, year, month)
- df_country = pd.DataFrame(data)
- db.bulk_insert(
- df_country,
- 't_yujin_crossborder_prov_country_trade',
- conflict_columns=['crossborder_year_month', 'prov_code', 'country_code'],
- update_columns=['monthly_total', 'monthly_import', 'monthly_export',
- 'yoy_import_export', 'yoy_import', 'yoy_export']
- )
- found_count += 1
- else:
- data_type = 'export' if table_type == 'export_commodity' else 'import'
- commodity_data[data_type] = parse_commodity_table(driver, data_type, year, month)
- found_count += 1
- except Exception as e:
- log.info(f"表格处理失败: {e}")
- # 将数据返回,而不是在内部合并
- return found_count, commodity_data
- def parse_country_table(driver, year, month):
- """解析目标页面的表格数据"""
- data = []
- try:
- # 等待表格加载
- WebDriverWait(driver, 15).until(
- EC.presence_of_element_located((By.XPATH, "//table[@border='1']"))
- )
- table = driver.find_element(By.XPATH, "//table[@border='1' and @bordercolor='#000000']")
- rows = table.find_elements(By.TAG_NAME, 'tr')
- # 检测表格的列数
- header_row = rows[2] # 假设表头在第3行
- header_row.find_elements(By.TAG_NAME, 'td')
- # 数据行从第4行开始(跳过表头)
- for row in rows[4:]:
- cols = [col.text.strip() for col in row.find_elements(By.TAG_NAME, 'td')]
- country_name = cols[0]
- if (country_name == '广东外贸总值' or
- country_name == '东盟' or
- country_name == '欧盟' or
- country_name == '总计' or
- country_name == '广东外贸总额' or
- country_name == '广东外贸总计' or
- country_name == '总值'
- ):
- continue
- if month == 2:
- # 处理合并后的1月和2月数据
- monthly_total = convert_wan_to_yuan(cols[1])
- monthly_export = convert_wan_to_yuan(cols[3])
- monthly_import = convert_wan_to_yuan(cols[5])
- # 将2月的数据除以2,并生成1月和2月的数据
- for m in [1, 2]:
- adjusted_monthly_total = monthly_total / 2
- adjusted_monthly_export = monthly_export / 2
- adjusted_monthly_import = monthly_import / 2
- adjusted_yoy_total = 0
- adjusted_yoy_export = 0
- adjusted_yoy_import = 0
- country_name_clean = clean_county_name(country_name)
- country_code = COUNTRY_CODE_MAPPING.get(country_name_clean)
- data.append({
- 'crossborder_year': year,
- 'crossborder_year_month': f"{year}-{m:02d}",
- 'prov_code': PROV_CODE,
- 'prov_name': PROV_NAME,
- 'country_code': country_code,
- 'country_name': country_name_clean,
- 'monthly_total': adjusted_monthly_total,
- 'monthly_export': adjusted_monthly_export,
- 'monthly_import': adjusted_monthly_import,
- 'yoy_import_export': adjusted_yoy_total,
- 'yoy_export': adjusted_yoy_export,
- 'yoy_import': adjusted_yoy_import
- })
- else:
- # 原逻辑处理13列的情况
- monthly_total = convert_wan_to_yuan(cols[3])
- monthly_export = convert_wan_to_yuan(cols[7])
- monthly_import = convert_wan_to_yuan(cols[11])
- yoy_total = parse_number(cols[4])
- yoy_export = parse_number(cols[8])
- yoy_import = parse_number(cols[12])
- country_name_clean = clean_county_name(country_name)
- country_code = COUNTRY_CODE_MAPPING.get(country_name_clean)
- data.append({
- 'crossborder_year': year,
- 'crossborder_year_month': f"{year}-{month:02d}",
- 'prov_code': PROV_CODE,
- 'prov_name': PROV_NAME,
- 'country_code': country_code,
- 'country_name': country_name_clean,
- 'monthly_total': monthly_total,
- 'monthly_export': monthly_export,
- 'monthly_import': monthly_import,
- 'yoy_import_export': yoy_total,
- 'yoy_export': yoy_export,
- 'yoy_import': yoy_import
- })
- except Exception as e:
- log.info(f"解析表格失败: {e}")
- raise
- finally:
- driver.close()
- driver.switch_to.window(driver.window_handles[0])
- return data
- def parse_commodity_table(driver, data_type, year, month):
- """解析商品表通用函数"""
- data = []
- try:
- table = driver.find_element(By.XPATH, "//table[@border='1' and @bordercolor='#000000']")
- rows = table.find_elements(By.TAG_NAME, 'tr')
- # 检测表格的列数
- header_row = rows[2] # 假设表头在第3行
- cols = header_row.find_elements(By.TAG_NAME, 'td')
- num_cols = len(cols)
- # 数据行从第4行开始(跳过表头)
- for row in rows[4:]:
- cols = [col.text.strip() for col in row.find_elements(By.TAG_NAME, 'td')]
- if len(cols) < 3:
- continue
- # 清洗商品名称(处理 和空格)
- name = clean_commodity_name(cols[0])
- if month == 2:
- # 处理合并后的1月和2月数据
- value = convert_wan_to_yuan(cols[1])
- # 将2月的数据除以2,并生成1月和2月的数据
- for m in [1, 2]:
- adjusted_value = value / 2
- adjusted_yoy = 0 # 同比置为0
- data.append({
- 'commodity_name': name,
- 'commodity_code': db.get_commodity_id(name),
- 'monthly_export' if data_type == 'export' else 'monthly_import': adjusted_value,
- 'crossborder_year_month': f"{year}-{m:02d}"
- })
- else:
- # 原逻辑处理5列的情况
- value = convert_wan_to_yuan(cols[3] if data_type == 'export' else cols[3])
- data.append({
- 'commodity_name': name,
- 'commodity_code': db.get_commodity_id(name),
- 'monthly_export' if data_type == 'export' else 'monthly_import': value,
- 'crossborder_year_month': f"{year}-{month:02d}"
- })
- except Exception as e:
- log.info(f"解析商品表失败: {e}")
- raise
- finally:
- driver.close()
- driver.switch_to.window(driver.window_handles[0])
- return data
- def merge_commodity_data(import_data, export_data, year, month):
- """
- 根据commodity_code合并进出口数据(支持不同商品的存在情况)
- :param year:
- :param month:
- :param import_data: 进口数据列表(含commodity_code)
- :param export_data: 出口数据列表(含commodity_code)
- :return: 合并后的DataFrame
- """
- # 转换数据为DataFrame
- df_import = pd.DataFrame(import_data)
- df_export = pd.DataFrame(export_data)
- # 合并逻辑(全外连接保留所有商品)
- merged_df = pd.merge(
- df_import,
- df_export,
- on=['commodity_code', 'commodity_name', 'crossborder_year_month'],
- how='outer'
- ).fillna(0)
- # 计算总量(可选,根据表结构需求)
- merged_df['monthly_total'] = merged_df['monthly_import'] + merged_df['monthly_export']
- merged_df['crossborder_year'] = year
- merged_df['crossborder_year_month'] = f"{year}-{month:02d}"
- merged_df['prov_code'] = PROV_CODE
- merged_df['prov_name'] = PROV_NAME
- return merged_df
- def parse_number(text):
- """转换文本为浮点数(处理空值、负号)"""
- text = text.strip().replace(',', '')
- if not text or text == '-':
- return None
- try:
- return float(text)
- except ValueError:
- return None
- # 优化后的代码逻辑:
- def reverse_crawler(driver, target_months):
- """逆向分页抓取核心逻辑"""
- processed_months = set()
- page = 1
- for year, month in target_months:
- log.info(f"\n开始处理 {year}年{month}月数据".center(50, "="))
- WebDriverWait(driver, 15).until(EC.presence_of_element_located((By.CLASS_NAME, "conList_ul")))
- current_page = 1
- found_tables = 0
- export_data = []
- import_data = []
- while True:
- random_sleep(base=2, variance=3)
- try:
- log.info(f"当前页面:{driver.current_url}, 第{page}页")
- found, commodity_data = process_month_data(driver, year, month)
- found_tables += found
- # 累积商品数据
- if commodity_data['export']:
- export_data.extend(commodity_data['export'])
- if commodity_data['import']:
- import_data.extend(commodity_data['import'])
- # 完成三个表格采集
- if found_tables >= 3:
- # 确保同时有进口和出口数据
- if export_data and import_data:
- final_df = merge_commodity_data(export_data, import_data, year, month)
- db.bulk_insert(df=final_df, table_name='t_yujin_crossborder_prov_commodity_trade',
- conflict_columns=['commodity_code', 'crossborder_year_month'],
- update_columns=['monthly_import', 'monthly_export', 'monthly_total'])
- log.info(f"已完成{year}年{month}月全部表格采集")
- processed_months.add((year, month))
- break
- log.info(f"第{page}页已采集表格数:{found_tables}/3,前往下一页采集")
- # 分页点击逻辑
- WebDriverWait(driver, 15).until(
- EC.element_to_be_clickable((By.XPATH, '//a[@class="pagingNormal next"]'))
- ).click()
- current_page += 1
- page += 1
- except TimeoutException:
- log.info(f"未找到更多分页,已采集表格数:{found_tables}/3")
- break
- except Exception as e:
- log.info(f"分页异常:{str(e)}")
- handle_retry(driver)
- break
- return processed_months
- def random_sleep(base=2, variance=5):
- """智能随机等待"""
- sleep_time = base + random.random() * variance
- time.sleep(sleep_time)
- def handle_retry(driver):
- """异常恢复处理"""
- try:
- driver.refresh()
- WebDriverWait(driver, 15).until(
- EC.presence_of_element_located((By.CLASS_NAME, "conList_ul"))
- )
- log.info("浏览器异常已恢复")
- except:
- log.info("需要人工干预的严重错误")
- raise
- def main():
- """主入口(优化参数处理逻辑)"""
- parser = argparse.ArgumentParser(description='海关数据智能抓取系统')
- parser.add_argument('--year', type=int, default=None,
- help='终止年份(如2023),未指定时抓取最新两个月')
- args = parser.parse_args()
- driver = webdriver.Firefox(options=configure_stealth_options(download_dir))
- try:
- # 智能检测最新有效月份
- valid_year, valid_month = detect_latest_month(driver)
- log.info(f"【广东海关】最新数据:{valid_year}年{valid_month:02d}月")
- # 生成目标序列
- if args.year:
- # 指定年份时:从最新月到目标年1月
- target_months = generate_month_sequence(
- start_year=valid_year,
- start_month=valid_month,
- end_year=args.year,
- skip_january=True
- )
- else:
- # 未指定年份时:取最近两个月
- target_months = generate_month_sequence(valid_year, valid_month)
- log.info(f"【广东海关】目标采集月份序列:{target_months}")
- reverse_crawler(driver, target_months)
- log.info(f"【广东海关】{len(target_months)}个月份数据已采集完毕")
- finally:
- driver.quit()
- log.info("\n数据清洗入库中...")
- if __name__ == "__main__":
- main()
|