import time from pathlib import Path import pandas as pd from utils import base_country_code, base_mysql from utils.base_country_code import format_sql_value city_code_map = { "南京市": "3201", "无锡市": "3202", "徐州市": "3203", "常州市": "3204", "苏州市": "3205", "南通市": "3206", "连云港市": "3207", "淮安市": "3208", "盐城市": "3209", "扬州市": "3210", "镇江市": "3211", "泰州市": "3212", "宿迁市": "3213" } ignore_city_code_arr = ['江阴市','宜兴市','常熟市','张家港市','昆山市','吴江市','太仓市','启东市','东台市','仪征市','丹阳市','兴化市'] def get_df(path): global df, df_type file_paths = list(Path(path).glob('*')) if not file_paths: print("未找到任何文件") return if len(file_paths) == 1: file_path = file_paths[0] print(f"处理单文件: {file_path.name}") xls = pd.ExcelFile(file_path) sheet_name = base_country_code.find_sheet_by_keyword(file_path, "地") if not sheet_name: print(f"{file_path} 未找到包含 地市 sheet") return None df = pd.read_excel(xls, sheet_name=sheet_name, header=None).iloc[5:] df_type = 0 else: for file in file_paths: if "地区" in file.name: print(f"处理多文件: {file.name}") file_path = Path(path) / file df = pd.read_excel(file_path, header=None).iloc[6:] df_type = 1 break return df, df_type def process_folder(path): year, month = base_country_code.extract_year_month_from_path(path) year_month = f'{year}-{month:02d}' sql_arr = [] res = get_df(path) if res is None: print(f"{year_month} prov_region_trade 未找到包含 地市 sheet") return df, df_type = res if df_type == 0: country_name_index = 0 col_total_index = 1 else: country_name_index = 1 col_total_index = 2 for index, row in df.iterrows(): city_name = str(row.values[country_name_index]).strip() flag = False for ignore_city_code in ignore_city_code_arr: if city_name.startswith('其中') or ignore_city_code.endswith(city_name): flag = True break if flag: print(f"忽略 {city_name}") continue city_code = city_code_map.get(city_name) if not city_code: print(f"未找到省 '{city_name}' 对应市编码") continue monthly_export, monthly_import, monthly_total = value_row(row, col_total_index) if df_type == 0: monthly_export, monthly_import, monthly_total = round(float(monthly_export) * 10000, 4), round(float(monthly_import) * 10000, 4), round(float(monthly_total) * 10000, 4) yoy_export, yoy_import, yoy_import_export = 0, 0, 0 # 组装 SQL 语句 sql = (f"INSERT INTO t_yujin_crossborder_prov_region_trade " f"(crossborder_year, crossborder_year_month, prov_code, prov_name, city_code, city_name, monthly_total, monthly_export, monthly_import,yoy_import_export, yoy_import, yoy_export, create_time) VALUES " f"('{year}', '{year_month}', '320000', '江苏省', '{city_code}', '{city_name}', {format_sql_value(monthly_total)}, {format_sql_value(monthly_export)}, {format_sql_value(monthly_import)}, '{yoy_import_export}', '{yoy_import}', '{yoy_export}', now());\n") sql_arr.append(sql) print(f"√ {year_month} prov_region_trade 成功生成 SQL 文件 size {len(sql_arr)} ") # 解析完后生成sql文件批量入库 base_mysql.bulk_insert(sql_arr) print(f"√ {year_month} prov_region_trade SQL 存表完成!") def value_row(row,col_total_index): monthly_total = str(row.values[col_total_index]).strip() monthly_export = str(row.values[col_total_index + 2]).strip() monthly_import = str(row.values[col_total_index + 4]).strip() return monthly_export, monthly_import, monthly_total def hierarchical_traversal(root_path): root = Path(root_path) year_dirs = [ item for item in root.iterdir() if item.is_dir() and base_country_code.YEAR_PATTERN.match(item.name) ] for year_dir in sorted(year_dirs, key=lambda x: x.name, reverse=True): print(f"\n年份:{year_dir.name} | 省份:jiangsu") month_dirs = [] for item in year_dir.iterdir(): if item.is_dir() and base_country_code.MONTH_PATTERN.match(item.name): month_dirs.append({"path": item, "month": int(item.name)}) if month_dirs: for md in sorted(month_dirs, key=lambda x: x["month"], reverse=True): print(f" 月份:{md['month']:02d} | 路径:{md['path']}") process_folder(md['path']) if __name__ == '__main__': hierarchical_traversal(base_country_code.download_dir) print(f"江苏南京海关城市所有文件处理完成!") time.sleep(5) base_mysql.update_january_yoy('江苏省') base_mysql.update_shandong_yoy('江苏省') print("江苏南京同比sql处理完成")